- MacHale, L. T.; Whitehead, C. B.; Finke, R. G. Platinum Nanoparticle Formation Kinetics and Mechanistic Studies: Evidence for an Alternative 4-Step Mechanism Involving Size-Dependent Growth and Chloride Anion and Room-Dust-Dependent Nucleation. J. Phys. Chem. C 2024, 128, 13083-13096. DOI: 10.1021/acs.jpcc.4c02718
- Long, D.; Bangerth, W.; Handwerk, D. R.; Whitehead, C. B.; Shipman, P. D.; Finke, R. G. Estimating Reaction Parameters in Mechanism-Enabled Population Balance Models of Nanoparticle Size Distributions: A Bayesian Inverse Problem Approach. J. Comp. Chem. 2022, 43, 43-56. DOI: 10.1002/jcc.2670
- Whitehead, C. B.; Finke, R. G. Particle Formation Mechanisms Supported By In Situ Synchrotron XAFS and SAXS Studies: A Review of Metal, Metal-Oxide, Semiconductor and Selected Other Nanoparticle Formation Reactions. Mater. Adv. 2021, 2, 6532-6568. DOI: 10.1039/D1MA00222H
- Whitehead, C. B.; Handwerk, D. R.; Shipman, P. D; Li, Y.; Frenkel, A. I.; Ingham, B.; Kirby, N. M.; Finke, R. G. Nanoparticle Formation Kinetics, Mechanisms, and Accurate Rate Constants: Examination of a Second-Generation Ir(0)n Particle Formation System by Five Monitoring Methods Plus Initial Mechanism-Enabled Population Balance Modeling. J. Phys. Chem. C 2021, 125, 13449-13476. DOI: 10.1021/acs.jpcc.1c03475
- Whitehead, C. B.; Özkar, S.; Finke, R. G. LaMer’s 1950 Model of Particle Formation: A Review and Critical Analysis of Its Classical Nucleation and Fluctuation Theory Basis, of Competing Models and Mechanisms for Phase-Changes and Particle Formation, and then of Its Application to Silver Halide, Semiconductor, Metal, and Metal-Oxide Nanoparticles. Mater. Adv. 2021, 2, 186-235. DOI: 10.1039/D0MA00439A (Selected for the 2021 Popular Advances Collection)
- Whitehead, C. B.; Watzky, M. A.; Finke, R. G. “Burst Nucleation” vs Autocatalytic, “Burst” Growth in Near-Monodisperse Particle-Formation Reaction. J. Phys. Chem. C 2020, 124, 24543-24554. DOI: 10.1021/cas.jpcc.0c06875
- Finke, R. G.; Watzky, M. A.; Whitehead, C. B. Response to “Particle Size Is a Primary Determinant for Sigmoidal Kinetics of Nanoparticle Formation: A “Disproof” of the Finke–Watzky (F-W) Nanoparticle Nucleation and Growth Mechanism”. Chem. Mater. 2020, 32, 3657-3672. DOI: 10.1021/acs.chemmater.0c00780
- Handwerk, D. R.; Shipman, P. D.; Whitehead, C. B.; Özkar, S.; Finke, R. G. Particle Size Distributions via Mechanism-Enabled Population Balance Modeling. J. Phys. Chem. C 2020, 124, 4852-4880. DOI: 10.1021/acs.jpcc.9b11239
- Handwerk, D. R.; Shipman, P. D.; Whitehead, C. B.; Özkar, S.; Finke, R. G. Mechanism-Enabled Population Balance Modeling of Particle Formation en Route to Particle Average Size and Size Distribution Understand and Control. J. Am. Chem. Soc. 2019, 141, 15827-15839. DOI: 10.1021/jacs.9b06364
- Whitehead, C. B.; Özkar, S.; Finke, R. G. LaMer’s 1950 Model for Particle Formation of Instantaneous Nucleation and Diffusion-Controlled Growth: A Historical Look at the Model’s Origins, Assumptions, Equations, and Underlying Sulfur Sol Formation Kinetics Data. Chem. Mater. 2019, 31, 7116-7132. DOI: 10.1021/acs.chemmater.9b01273
- Whitehead, C. B.; Finke, R. G. Nucleation Kinetics and Molecular Mechanism in Transition-Metal Nanoparticle Formation: The Intriguing, Informative Case of a Bimetallic Precursor, {[(1,5-COD)IrI•HPO4]2}2-. Chem. Mater. 2019, 31, 2848-2862. DOI: 10.1021/acs.chemmater.8b05335
Christopher Whitehead
Areas of expertise
Inorganic Chemistry, Materials Chemistry, Nanotechnology
Research interests
Research in the Whitehead Group aims to combat heavy metal pollution in fresh water systems. We are developing a class of inexpensive nanomaterials that are capable of detecting and removing heavy metal pollutants from our waterways. We use a subset of nanomaterials called Quantum Dots (QDs), which have been used in light emitting diodes (LEDs), solar cells, and medicine. QDs are a fascinating class of materials because we can tune the size, shape, and thus activity of the final product. In our group, we are using QDs as sensors to detect the presence of heavy metals.
All projects in the Whitehead Group will involve varying degrees of synthesis, characterization, and application. We use the hot-injection technique and synthesize QDs using earth-abundant and environmentally-friendly elements. Potential characterization techniques include nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence (PL) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Current projects are focused on the development of selected QD systems and characterizing their sensitivities towards heavy metals.
I have projects available for students interested in doing thesis, practicum, summer, or scholar's. Full project descriptions are available on the Chemistry & Biochemistry Nexus page. If you are interested, email me at whitehec@union.edu to set up an informational meeting!
Teaching interests
CHM 101L Introductory Chemistry I Lab
CHM 102 Introductory Chemistry II & Lab
CHM/ESC 224 Frontiers in Nanotechnology
CHM 260 Inorganic Chemistry & Lab
CHM 360 Advanced Inorganic Chemistry
Additional media
Distinctions
Isaac W. Jackson Award, Union College Swimming & Diving, 2023
Areas of interest
Reading, swimming, fitness, baking, board games, and LGBTQ+ advocacy.Publications & Recent Funding
-
Publications
-
Recent Funding
- Community Foundation for the Greater Capital Region's Bender Scientific Fund: "Zinc Sulfide Quantum Dot Sensors to Detect Heavy Metal Pollutants in Water" $12,379, October 2023.
- National Science Foundation (CHE-2320284): "MRI: Track 1 Acquisition of a Multifunctional Thermal Analysis Instrument for Interdisciplinary Research and Research Training in Advanced Nanomaterial Development" P.I. Ellen Robertson; co-PIs Christopher Whitehead, Yijing Stehle, Ann Anderson, Mary Carroll. $224,834, August 2023.
- Union College Faculty Research Fund: “Acquisition of a Dynamic Light Analyzer for Particle and Nanoparticle Size, Number, and Surface Charge Determination.” Christopher Whitehead (PI), Stephanie Curley (Co-PI), and Ellen Robertson (Co-PI), $9,000, February 2023.
- Union College Education Research Fund: "Development of New Lab for CHM-260: Inorganic Chemistry." $2,570, February 2023
Academic credentials
B.A., Willamette University; Ph.D., Colorado State University; Postdoc, University of BaselIntegrated Science and Engineering Complex (ISEC)
View in Google Maps